One injection That May Kill Cancer Has Been Discovered

Researchers at the Stanford University School of Medicine in California, experimenting with a state-of-the-art treatment for cancer have now invented a targeted injection that has already successfully eradicated tumors in mice.

Research creating more active treatments for all types of cancer has been abundant over the past few years, offering new hope all the time.

READ ALSO: Sleeping With Your Mobile Phone Could Cause Infertility and Cancer

Some of the most current experiments include using hi-tech nanotechnology to hunt down microtumors, engineering microbes to foil cancer cells, and starving malignant tumors to death.

The latest study has studied the potential injecting small amounts of two agents that stimulate the body’s immune response directly into a malignant solid tumor.

Their studies using mice have proven successful.

Senior study author Dr. Ronald Levy said;

When we use these two agents together, we see the elimination of tumors all over the body.”

“This approach bypasses the need to identify tumor-specific immune targets and doesn’t require wholesale activation of the immune system or customization of a patient’s immune cells.”

Dr. Levy specializes in the use of immunotherapy which is a type of treatment where the immune response of the body is enhanced so that it can target cancer cells to fight lymphoma, or cancer of the lymphatic system.

There are several types of immunotherapy, including some that increase the entire immune system of the body and others that are a lot more targeted. But, the researchers note, they all come with cautions attached.

They may have problematic side effects, be time-consuming, or be simply too costly. The team’s method, however, arguably has more benefits — even beyond its potential effectiveness as a treatment.

“Our approach uses a one-time application of very small amounts of two agents to stimulate the immune cells only within the tumor itself,” Dr. Levy explains. This method can “teach” immune cells how to fight against that specific type of cancer, which then allows them to migrate and destroy all other existing tumors.

READ ALSO: Scientists Claim To Have Found Way of Using Gut Bacteria and Fiber to Fight Diabetes

Although the immune system’s role is to detect and eliminate harmful foreign bodies, many types of cancer cell are able to evade detection in complex ways, which makes them to grow and spread.

A type of white blood cell called play a vital role in regulating the body’s immune response. Normally, T cells would target and fight cancer tumors, but all too often, cancer cells learn to “trick” them and escape the immune response.

Effective against many types of cancer

In the new study, Dr. Levy and his team delivered micrograms of two specific agents into one hard tumor site in each of the affected mice. The agents in question were:

  • CpG oligonucleotide, a short stretch of synthetic DNA that boosts the immune cells’ ability to express a receptor called OX40, which is found on the surface of T cells
  • an antibody that binds to the receptor, activating the T cells

Once the T cells are activated, some of them migrate to other parts of the body, “hunting down” and terminating other tumors.

Dr. Levy and his team of researchers noted that this method could be used to target a number of different kinds of cancer; in each case, the T cells will “learn” to deal with the specific type of cancer cell that they have been exposed to.

The researchers first applied this method to the mouse model of lymphoma in the laboratory, and 87 out of 90 mice became cancer-free. The tumors did return, but they disappeared when the researchers administered the treatment a second time.

Similarly successful results were observed in the mouse model of breast, colon, and skin cancer. Also, even the mice that were genetically engineered to develop breast cancer spontaneously responded well to this method of treatment.

READ ALSO: Possible New Treatment Discovered for Drug-resistant Skin Cancer

When scientists transplanted two different types of cancer tumor: lymphoma and colon cancer, in the same animal but only injected the experimental formula into a lymphoma site, the results were mixed.

All the lymphoma tumors retreated, but the same was not applicable for the colon cancer tumor, confirming that the T cells only learn to deal with the cancer cells that were in their direct area before the injection. Dr Levy stated;

“This is a very targeted approach. Only the tumor that shares the protein targets displayed by the treated site is affected. We’re attacking specific targets without having to identify exactly what proteins the T cells are recognizing.”

Currently, the team is preparing a clinical trial to test the effectiveness of this treatment in people with low-grade lymphoma. Dr. Levy hopes that, if the clinical trial is positive, they will be able to extend this therapy to virtually any kind of cancer tumor in humans.

 

Leave a Reply

Your email address will not be published. Required fields are marked *